Numerical results for the ground-state interface in a random medium
نویسندگان
چکیده
منابع مشابه
Numerical results for the ground-state interface in a random medium.
The problem of determining the ground state of a d-dimensional interface embedded in a (d + 1)-dimensional random medium is treated numerically. Using a minimum-cut algorithm, the exact ground states can be found for a number of problems for which other numerical methods are inexact and slow. In particular, results are presented for the roughness exponents and ground-state energy fluctuations i...
متن کاملInterface depinning in a disordered medium - numerical results
We propose a lattice model to study the dynamics of a driven interface in a medium with random pinning forces. The critical exponents characterizing the depinning transition are determined numerically in 1+1 and 2+1 dimensions. Our findings are compared with recent numerical and analytical results for a Langevin equation with quenched noise, which is expected to be in the same universality class.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولDirect Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملNumerical Methods with Interface Estimates for the Porous Medium Equation*
If the data has slightly more regularity, then this too is satisfied by the solution. Specifically, if m is no greater than two and u0 is Lipschitz continuous, then u( · , t) is also Lipschitz; if m is greater than two and (u 0 )x ∈ L(R), then (u( · , t))x ∈ L(R) (see [4]). (This will follow from results presented here, also.) We also use the fact that the solution u is Hölder continuous in t [...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1995
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.52.r3337